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Abstract
The blackbody radiation in a box L3 with periodic boundary conditions
in thermal equilibrium at a temperature T is affected by finite-size effects.
These bring about modifications of the thermodynamic functions which can
be expressed in a closed form in terms of the dimensionless parameter LT .
For instance, when LT ∼ 4—corresponding to the value where the most
reliable SU(N) gauge lattice simulations have been performed above the
deconfining temperature Tc—the deviation of the free energy density from
its thermodynamic limit is about 5%. This may account for almost half of the
pressure deficit observed in lattice simulations at T ∼ 4Tc.

PACS numbers: 11.10.Wx, 11.15.Ha, 12.38.Mh

In a very hot quark–gluon plasma, when the temperature is much larger than any other
relevant mass scale, asymptotic freedom leads us to expect that the effective coupling to be
used in thermodynamical calculations should be small. However, even in the case where
the coupling is very small, strict perturbation theory cannot be used, the reason being that
infrared divergences occur in high order calculations and various resummations are needed to
get meaningful results. A lot of effort has been devoted to the perturbative calculations of the
pressure [1–5]. The values obtained by adding successively high order contributions oscillate
too much and strongly depend on the renormalization scale. Thus, such a plasma cannot be
described simply as a gas of weakly interacting quarks and gluons.

This very conclusion was also reached by lattice studies both for the pure SU(3) gauge
case [6] and for different kinds of fermions [7–9]. Such calculations revealed a slow approach
to the ideal gas limit of the thermodynamic functions. In particular, it resulted in a large
deficit in the pressure and entropy as compared to the Stefan–Boltzmann law for free gluon
gas, which remained at the level of more than 10% even at temperatures as high as T � 4Tc.
Similar results have also been found for SU(4) and SU(8) gauge theories in a more restricted
range of temperatures [10].
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Figure 1. Deviations from the thermodynamic limit (Ns → ∞) of three different ideal lattice
gases with finite spatial extent for two different values of the ratio Ns/Nt . Some symbols are
shifted to the right for clarity. For comparison, the energy density of one of these models is drawn
in units of the continuum limit to show the dependence on the cut-off. The data are taken from
tables 1 and 2 of [11]. One observes a remarkable cancellation of the UV cut-off effects for Nt > 4
and the emergence of a universal function of Ns

Nt
. The horizontal lines are not fits, but denote the

two values assumed by the function 1 − 15
2π2 (Nt /Ns)

3 as predicted by equation (4).

These simulations were made on lattices of size N3
s × Nt with periodic boundary

conditions. Much effort has been dedicated to studying and controlling the ultraviolet (UV)
cut-off effects which are in general O((aT )2). In the standard Wilson formulation, temporal
extent Nt = 1/aT � 8 is needed in order to get reliable extrapolations of the thermodynamic
functions to the continuum limit.

In this paper, I wish to focus on another facet of lattice simulations, i.e. the infrared (IR)
finite-size effects. In fact, for a thorough comparison of the numerical data of the hot quark–
gluon plasma with the Stefan–Boltzmann (SB) law, one should consider a free gluon gas
enclosed in a box with the same size and the same boundary conditions of the corresponding
numerical experiment. It is clear that finite-size effects are expected to be particularly relevant
in a free boson gas: the lack of an intrinsic length scale leads to a maximal sensitivity to the
geometrical shape Ns/Nt = LT of the system. The purpose of this paper is to evaluate these
infrared effects.

This might appear to be an academic exercise in view of the fact that in T → ∞ limit the
internal energy density ε of the resulting ideal lattice gluon gas has been explicitly evaluated
[11] through numerical integration both in the thermodynamic limit and for fixed Ns/Nt .
The finite-size effects turn out to be of the order of 1% for Ns/Nt = 4 [11] (see figure 1).
Moreover, in the continuum limit this system is scale invariant, therefore the trace of the
energy–momentum tensor is vanishing

T µ
µ ≡ ε − 3p = 0 (T → ∞, a → 0, Ns/Nt = const), (1)

hence the deviations of the pressure from the SB value are even smaller.
There is however a missing point in the above reasoning. The quantity which is calculated

in lattice simulations is not the pressure p, but the free energy density f , the reason [12] being
that the evaluation of p would involve the derivative of the bare coupling with respect to the
volume which is known only perturbatively, while f can be evaluated in a sounder way and
in the thermodynamic limit one has p = −f . In a finite volume, however, this relation is
violated. A numerical study on a SU(2) gauge system at intermediate temperatures suggested
the empirical rule Ls/Lt � 4 [12] to get rid of the finite-size corrections. In fact, this bound
is not enough at high temperature: in the free gluon gas limit, where the canonical partition
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Figure 2. Deviation from the thermodynamic limit fSB of the free energy density f of the free
gluon gas.

(This figure is in colour only in the electronic version)

function Z can be evaluated exactly even on finite volume, we shall prove that

log Z

N2 − 1
= π2

45
(LT )3 − log

√
LT + O(e−2πLT ). (2)

As expected, this quantity is not purely extensive, owing to the finiteness of the volume
V = L3. Its deviation from the thermodynamic limit is a universal function of LT . We may
derive from Z any other thermodynamical function. The quantities we will concentrate on are
the pressure p, the internal energy density ε and the free energy density. These are given by,
neglecting exponential corrections,

p ≡ T

(
∂ log Z

∂V

)
T

= (N2 − 1)

(
π2T 4

45
− T

6V

)
, (3)

ε ≡ T 2

V

(
∂ log Z

∂T

)
V

= (N2 − 1)

(
π2T 4

15
− T

2V

)
, (4)

−f ≡ T

V
log Z = (N2 − 1)

(
π2T 4

45
− T

V
log

√
LT

)
. (5)

According to (1) we have ε − 3p = 0, while

p + f

T 4
= N2 − 1

6

log(LT )3 − 1

(LT )3
, (6)

therefore we cannot trade p for −f unless LT is large enough. The presence of a log term in
f makes it vary very slowly with the shape LT (see figure 2). The variation is almost 10%
for Ns/Nt � 3 where the simulations with staggered quarks are currently performed [9] and
reduces to 1% only at Ns/Nt � 8 which seems presently unattainable.

A non-trivial numerical check of the above formulae comes from the mentioned study
[11] on T → ∞ limit of SU(3) gauge theory, where three different O(a2) and O(a4)

improved actions were used to explore finite-size effects on ideal lattice gluon gases. The
energy density ε(Nt/Ns,Nt ) was evaluated by numerical integration for some values of Nt

and for two different ratios Ns/Nt = 4 and Ns/Nt = 6 (five significant digits) as well as
in the thermodynamic limit ε(0, Nt ) (seven significant digits). Their ratios are plotted in
figure 1 as functions of Nt . In principle, these should be model-dependent functions of Ns/Nt

and Nt , but there is a remarkable cancellation of the UV cut-off dependence for Nt > 4.
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As a consequence, there is no other intrinsic length scale in the game besides the size of the
system, hence these ratios are expected to collapse towards a universal function of Ns/Nt

which, according to (4), should be 1 − 15
2π2 (Nt/Ns)

3. The numerical data fit perfectly this
prediction within numerical accuracy.

Let us come to a proof of the main formula (2). For the sake of generality, I shall treat the
case of a massless scalar field φ in a (hyper)cubic box of volume V = LD at a temperature
T. The canonical partition function Z is defined by a functional integral over all periodic field
configurations with period L in the space directions and with period β = 1/T in the imaginary
time. The dimensions of the box are large compared to β, i.e. LT � 1.

There is a rich literature on a strictly related subject, the Casimir effect, where different
methods have been developed to study various kinds of finite-size effects (see e.g. [13] for
useful formulae and further references). It is however more instructive to account for the
functional form of Z by exploiting some simple symmetry principles. First, we require that
Z be dimensionless, of course. Owing to the absence of intrinsic length scales, Z should be
a function of the unique dimensionless parameter LT . This yields invariance under the scale
transformation

Z = Z(LT ) ⇔ L → sL, β → sβ (7)

Secondly, the D + 1 periodic box defines a cell of an infinite, regular, lattice. The physics
should not depend on the choice of the fundamental region tiling the whole (D+1)-dimensional
space by discrete translations. This requires modular invariance of the system.

Periodic boundary conditions allow for a zero mode φ = φo of the scalar field. In a
system with zero modes the functional integral splits into two factors,

Z(LT ) = CoD = Co[Det K]−
1
2 , (8)

where Co denotes the zero mode contribution while the other factor is the integral over the
Gaussian fluctuations around the zero modes, described by the kinetic operator K. The latter
can be written as the product over the eigenvalues λk of K in the usual form

[Det K]−
1
2 =

′∏
k

λ
− 1

2
k , (9)

the prime here indicating that we are to exclude the zero eigenvalue. Under general grounds
(see, e.g., [14] or [15], p 463) one can prove that a rescaling λk → s−2λk of all non-vanishing
eigenvalues yields correspondingly [Det K]−

1
2 → sN [Det K]−

1
2 , whereN denotes the number

of zero modes. In the present case K = −∂2 where ∂2 is the Laplacian, and

λ(mi, n) =
D∑

i=1

(
2πmi

L

)2

+

(
2πn

β

)2

(10)

where mi’s and n run from −∞ to ∞. As a consequence, D ≡ [Det − ∂2]−
1
2 is a function of

L and β and the mentioned rescaling property of D becomes

D(sL, sβ) = sD(L, β), (11)

showing that the zero mode factorization (8) spoils the scale invariance of D. In order to
recover the scale invariance of Z, the factor Co should have dimensions of length. The
only modular invariant quantity with this property can be constructed with the volume of
the (D + 1)-dimensional cell, namely, (LDβ)1/(D+1). Choosing s = 1/L we get, aside from
irrelevant numerical factors,

Z = (β/L)1/(D+1)D(1, β/L). (12)
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To explicitly evaluate D it is convenient to resort to the ζ -function regularization [16–18] of
the Laplacian determinant

D(1, β/L) =
∏
mi,n

′
(

D∑
i=1

m2
i + (LT n)2

)− 1
2

. (13)

where the prime now indicates a regularized product. One of the virtues of the ζ function
regularization is that one can deal with regularized sums or products as they were absolutely
convergent series and products [19–21]. In (13) we consider only the factors with n 
= 0
because the others generate irrelevant numerical constants. It is useful to classify the
factors according to the number k of non-vanishing mi . Denoting with ck the product
over the set {m1 
= 0, . . . , mk 
= 0, n 
= 0} and with pk the product over the set
Ik = {m1 > 0, . . . , mk > 0, n > 0} we have ck = p2k+1

k with

pk =
∏
Ik

′
[

k∑
i=1

m2
i + (LT n)2

]
, (14)

and

logD(1, β/L) = −
D∑

k=0

(
D

k

)
2k log pk. (15)

We now use the ζ -regulated product
∏′

m>0 m2 = 2π to rewrite pk in the form

pk =
∏
Ik−1

′
2π

∏
m>0

[
1 +

∑k−1
i=1 m2

i + (LT n)2

m2

]
. (16)

According to the known formula

∏
m>0

(
1 +

α2

m2

)
= eπα

2πα
(1 − e−2πα), (17)

we are led to the key identity

pk+1 = p
− 1

2
k eLE

(k)
C Qk (18)

with

Qk =
∏
Ik


1 − exp


−2π

√√√√ k∑
i=1

m2
i + (LT n)2





 . (19)

The ζ -regulated quantity

E
(k)
C = 1

2

∑
Ik

′
√√√√ k∑

i=1

(
2πmi

L

)2

+

(
2πn

β

)2

(20)

is the Casimir energy of φ in a box of size β

2 × (
L
2

)k
with Dirichlet boundary conditions.

Inserting (18) into (15), these Casimir energies combine to form the quantity

Eo =
D−1∑
k=0

2k

(
D − 1

k

)
E

(k)
C . (21)
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This is the zero-point energy of the massless scalar field in the periodic box of size β × LD−1,
which is exactly known even at finite values of LT (see, e.g., [13]):

Eo = −LD−1

βD

	
(

D+1
2

)
π

D+1
2

ζ(D + 1), (22)

where ζ(x) is the Riemann zeta function. Applying this to equation (15) and defining

log Q =
D−1∑
k=0

2k+1

(
D − 1

k

)
log Qk � e−2πLT + · · · (23)

we may rewrite equation (12) in the form

log Z = LD

βD

	
(

D+1
2

)
π

D+1
2

ζ(D + 1) −
log L

β

D + 1
− log Q. (24)

This is the final result. It can be rewritten in a more evocative form

log Z = −LEo − log LT

D + 1
−

∑
�k

log(1 − e−Lω�k ), (25)

where Z can now be viewed as the canonical partition function of φ in the asymmetric, periodic,
box LD−1β in equilibrium at the ‘temperature’ 1/L; the sum is over the momenta of the normal
modes of energy ω�k . The rotation, or modular transformation, of the fundamental D + 1 cell
with respect to the standard approach to blackbody radiation has made it possible to highlight
the finite-size effects of log Z. Aside from small exponential corrections, it differs from the
thermodynamic limit by a non-negligible logarithmic term. The latter is essential to enforce
modular invariance, which was obvious at the beginning of the calculation. Its origin can be
traced to the zero mode subtraction in equation (8).

When D = 1 we recover the known partition function of a scalar massless boson on
a 2-torus. Of course, for a free gluon gas one has to multiply this result by the number of
polarization states and by the dimensions of the adjoint representation of the gauge group.

In conclusion, in this paper it has been pointed out that the free energy of an ideal gluon
gas in a periodic box is affected by non-negligible IR finite-size effects. It would be very
interesting to observe similar effects in the interacting case. Unfortunately, in order to see
them varying the ratio T/Tc by acting on the coupling constant does not suffice: one has to
modify the ratio Ns/Nt = LT . Note that the finite-size deviation of f does not influence only
the evaluation of the pressure but also the internal energy and the entropy. In fact, in lattice
simulations one calculates two different physical quantities: the trace anomaly � = ε−3p and
the free energy density f , and one defines the energy density as ε � � − 3f and the entropy
density as s � (� − 4f )/T ; in view of equation (6) these are true only in the thermodynamic
limit. It has been observed [6] that the cut-off dependence in � is much smaller than for the
pressure alone. This could be a clue to IR finite-size effects.
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